Cointegrated Cryptocurrencies?
An Exploration of Price Movements

Stephen Lee
2018

Abstract

The original Bitcoin whitepaper was released in 2008 under the pseudonym

Satoshi Nakamoto ([Nakamotol 2008]). Here, the author introduces a
novel way of enabling secure peer-to-peer digital transactions without so-
called “double spending” attacks. Traditionally, these attacks are avoided
through the use of banks and other intermediaries (i.e. Paypal, Venmo)
who ensure that users transact honestly. With Bitcoin, however, double
spending is prevented through a clever combination of cryptography and
game theory. Since then, other projects (for example, [Buterin) 2013])
have modified the original Bitcoin protocol to create new blockchains,
each with their own coins. Colloquially referred to as “cryptocurrencies”,
these projects have captured the imagination of many. As of February
23, 2019, the three largest cryptocurrencies by market capitalization are
Bitcoin ($72.6 Billion), Ether ($16.6 Billion), and Ripple ($13.6 Billion).
Following [MacDonald and Taylor| [1989] and [Sephton and Larsen) [1991],
I explore price movements in the cryptocurrency market by looking for
cointegrating relationships between the various coins. While not neces-
sarily indicative of a market inefficiency, I do find some evidence to sug-
gest price changes in Bitcoin may precede similar changes in the price of
Litecoin, and further that none of the cryptocurrencies’ prices appear to
change independently of the others. Further, I find that investors seem to
respond to negative price changes with an increase in volatility.

1 Introduction

In 2008, the Bitcoin white paper was published under the pseudonym
Satoshi Nakamoto. The paper combined cryptography with a game theo-
retic incentive structure to provide secure peer-to-peer financial transac-
tions without needing a trusted 3rd party. Since then, other projects have
modified the Bitcoin rules to create new protocols to handle these transac-
tions. Colloquially referred to as “cryptocurrencies”, these projects have
captured the imagination of many. As of May 3, 2018, the three largest
cryptocurrencies by market capitalization are Bitcoin, Ether, and Ripple.
This time series analysis looks at those three coins, along with another
project, Litecoin, to see if there is any exploitable market inefficiency.
Notably, I test for Granger causality and co-integration to see if price



movements of one coin can act as an early indicator for another coin.
While these results are inconclusive at this point, the appearance of a
large “bubble” from December 2017 to February 2018 is likely responsi-
ble. Preliminary work with the “post-bubble” data indicate significant
unidirectional causality for each coin, with Bitcoin acting as the most ex-
ogenous series. Further, I fit TGARCH models to Bitcoin, Ether, and
Ripple and show that investors respond with increased volatility after a
negative price shock than for a positive price shock.

Further work is needed to explain the dramatic rise, and subsequent
fall, in price during the two month span from December 2017 to Febru-
ary 2018. In particular, I plan to explore a sentiment analysis approach
utilizing T'witter data during those periods.

2 Data

I gathered transaction-level data on Bitcoin, Ether, Ripple, and Litecoin
from the European coin exchange Bitstamp. The raw data includes infor-
mation about each transaction in the history of the exchange, including
the unix—timestamﬂ trade price, and trade quantity. Several points to
consider:

— The different coins were offered at different points in time. For
example, Bitcoin was the first coin offered on the exchange, while
Ether was the most recent addition. Thus, for consistency of the
analysis I used the earliest date such that trade information exists
for each coin.

— Each transaction is marked to the second. In order to use a smooth
time series without missing or repeated observations, I found the
smallest period of time such that at least one transaction took place
for each series. In this case, Litecoin was the limiting factor in
calculating the time periods - there was a maximum gap of 5525
seconds between subsequent transactions. Thus, I made a dataset
using this as the period length as well as a second dataset that used
one-hour as the period lengt}ﬂ Ultimately, for the analysis I used
the hourly dataset.

The final series consisted of hourly periods ranging from Thursday,
August 17, 2017 2:00:03 pm to Tuesday, April 24, 2018 4:00:03 am GMT.
Figure [I] show the raw series, and table [I] shows the descriptive statistics.

1The unix-timestamp is given by the number of seconds that have passed since January 1,
1970 at 12:00:00 am GMT

2Using one hour as the period length created a single missing observation in the Litecoin
series.
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Figure 1: Time series of each coin in dataset.
Bitcoin Ethereum | Ripple | Litecoin
Maximum $19537.83 | $1405.34 | $3.25 | $370.28
Minimum $3009.53 $204.85 | $0.15 $36.17
Mean $8648.10 $566.08 | $0.65 | $133.05
St. Dev $3749.17 $284.70 | $0.57 $76.66
Observations 5991 5991 5991 5990

Table 1: Descriptive statistics. Prices in USD.

Interestingly, the price for each coin are on different orders of mag-
nitude and include an order of magnitude variation from the minimum
to maximum. As the descriptive statistics show in table[I] Bitcoin has a
maximum price of $19,537.83 per BTC and minimum price of $3009.53
per BTC. On the other end of the spectrum, Ripple has a maximum price
of $3.25 per XRP, and a minimum price of $0.15 per XRP. Ethereum and
Litecoin have similar relative variation. In order to better understand how
the series moved in relative terms, I created a normalized series, {s"}, by
dividing the price at a given point in time by the series mean, ps. Math-

ematically this is to say:
n_ st

St = 1L (1)

Since this helps to normalize the series deviations, we can view this
graphically below:
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Figure 2: Overlay of each normalized series in dataset.

While the graph is a bit cluttered, what stands out is that Ripple
experienced the largest percent increase at its peak, while Litcoin, Ether,
and Bitcoin are all very similar. To get a clearer idea of how the series
respond to each other, I restrict the graph to only the two largest coins
by market cap - Bitcoin and Ether:
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Figure 3: Overlay of Bitcoin and Ether’s normalized series.

Here we see that, in normalized terms, Bitcoin’s largest surge and
drop seems to occur about a month (i.e. approximately 750 hours) before



Ether. Interesting, however, the last month or so in the dataset show
much tighter price movements, suggesting a potential change in investor
perspective.

3 Analysis and Results

Since the series levels are clearly not stationary, I calculated the series of
first differences (As; = s¢ — s¢—1) and performed the Augmented Dicky-
Fuller test for unit roots. In each differenced series, I am able to reject
the null hypothesis that a unit root exists and accept that the level series
are all integrated of degree one (i.e. I(1)). Visually we can see these
differenced series below:
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Figure 4: Time series of each differenced coin series in dataset.

3.1 Individual Series Analysis

While the differenced series do seem to have a time constant mean, the
variance is definitely not constant across time. With that in mind, I tested
various specifications using ARCH and GARCH errors to see how the data
moves. For each series, the ACF and PACF suggest significant autocorre-
lation for two-periods (i.e. two hours). However, after finding the best-fit
ARCH and GARCH, the series of squared residuals still indicates signifi-
cant autocorrelation and partial autocorrelation. Thus, I finally settled on
an AR model with TGARCH errors, suggesting that traders are affected
by whether the prices are rising or falling. The results for Bitcoin, Ether,
and Ripple are presented below.



3.1.1 Bitcoin

The best fitting model for the Bitcoin data is an AR(3) with TGARCH
error terms. After fitting I find the following modeﬂ

ABTC; = 0.20ABTCy—1 — 0.12ABTC}—2 + 0.03ABTCy—3 + €

)
(15.34) (—8.25) (2.36)
With an error process given by:
Ei 1(€]) = 23.25 + 0.068¢;_1 + 0.02D;_1€;_1 + 0.926h; 1 3)

(14.23) (23.13)  (3.82) (530.00)

Next we look at the ACF and PACF of the residual and squared resid-
ual series from this estimation. We find that they mirror a white noise
process.

Correlogram of Standardized Residuals

Date: 04/30/18 Time: 18:34

Sample: 1 5891

Included observations: 5987

Q-statistic probabilities adjusted for 3 ARMA terms

Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

0.011 0.011 0.7479

0.010 0.010 1.4037
-0.005 -0.006 1.5704

0.003 0.003 16170 0.204
-0.021 -0.021 4.2073 0.122
0.010 0.010 4.7922 0.188
0.001 0.002 4.8030 0.308
0.007 0.007 51241 0.401
-0.006 -0.006 53773 0.496
10 0.013 0.012 6.3401 0.501
11 -0.004 -0.004 6.4383 0.598
I I 12 0.018 0018 8.4914 0485
I I 13 0.005 0005 8.6480 0.566
I I 14 0.031 0030 14.363 0214
I I 15 0006 0.006 14.590 0.265
I I 16 0042 0.041 25.069 0.023
I I 17 0.024 0024 28463 0.012
I [

I [

| |

I [

000 =N & =

18 0.033 0031 34.820 0.003
19 0.008 0.008 35.174 0.004
20 0.016 0.015 36.795 0.004
21 0.010 0.012 37.379 0.005
22 -0.003 -0.004 37.438 0.007
23 0.011 0.012 38.128 0.009
24 -0.005 -0.007 38.300 0.012

*Probabilities may not be valid for this equation specification.

Figure 5: ACF and PACF of the residuals from the above AR(2) model with
TGARCH errors on the differenced Bitcoin series.

37-statistics in parentheses.



Correlogram of Standardized Residuals Squared

Date: 04/30/18 Time: 18:35
Sample: 1 5991
Included observations: 5987

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob*

I I 1 0.020 0.020 2.3194 0.128
2 -0.007 -0.007 2.5956 0.273
3 -0.003 -0.003 2.6666 0.446
4 -0.004 -0.004 27745 0.596
5 0022 0.023 57744 0329
6 -0.010 -0.011 6.3935 0.381
7 -0.010 -0.010 7.0496 0.424
8 -0.008 -0.008 7.4547 0.488
9 -0.005 -0.005 7.5967 0.575

10 0.000 -0.000 7.5969 0.668

11 -0.007 -0.007 7.8774 0.724

12 0.007 0.007 8.1515 0.773

13 -0.008 -0.008 8.5430 0.807

14 -0.003 -0.002 8.5877 0.857

15 -0.004 -0.004 8.6808 0.894

16 -0.002 -0.001 8.6974 0.925

17 -0.007 -0.008 8.9957 0.940

18 -0.004 -0.003 9.0766 0.958

19 -0.004 -0.004 9.1892 0.970

20 -0.005 -0.005 9.3353 0.979

21 -0.006 -0.006 9.5572 0.984

22 0013 0.013 10517 0.981

23 -0.008 -0.008 10.879 0.984

24 -0.006 -0.006 11.112 0.988

*Probabilities may not be valid for this equation specification.

Figure 6: ACF and PACF of the squared residuals from AR(2) model with
TGARCH errors on the differenced Bitcoin series.

3.1.2 Ether

The best fitting model for the Ether data is an AR(2) with TGARCH
error terms. After fitting I find the following modeﬂ

AETHt = 015AETHt_1 — OlOAETHt_Q -+ €t

(4)
(12.02) (—6.71)
With an error process given by:
Ei 1(€)=0.1240.11€;_1 +0.02D; _1€6;_1 + 0.89h; 1 %)

(12.72) (21.36)  (2.84) (270.10)

We again look at the ACF and PACF of the residual and squared
residual series from this estimation and confirm that they mirror a white
noise process.

47-statistics in parentheses.



Date: 05/01/18 Time: 10:03

Sample: 1 5991

Included observations: 5988

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

0.038 0038 87696

0.021 0020 11.537

-0.000 -0.002 11.537 0.001
0.022 0021 14369 0.001
g 1 16.898 0.001
0.012 0.013 16811 0.002
0.014 0.014 18055 0.003
-0.004 -0.006 18137 0.008
-0.002 -0.002 18.166 0.011
I 10 0.023 0.022 21253 0.007
I 11 0.011 0.010 22024 0.009
I 12 0.007 0.006 22303 0.014
I 13 0.009 0.008 22775 0.019
I 14 0.032 0.030 28964 0.004
I 15 0.014 0.012 30221 0.004
1
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16 0.034 0032 37226 0.001
17 0.027 0.024 41.743 0.000
18 0.015 0.011 43.178 0.000
19 0.015 0.014 44616 0.000
20 0.048 0045 58514 0.000
21 0.015 0.010 59.846 0.000
22 -0.006 -0.010 60.098 0.000
23 -0.001 -0.002 60.104 0.000
24 -0.029 -0.032 64999 0.000

*Probabilities may not be valid for this equation specification.

Figure 7: ACF and PACF of the residuals from the above AR(2) model with
TGARCH errors on the differenced Ether series.



Date: 05/01/18 Time: 10:03
Sample: 1 5991
Included observations: 5988

Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

| | 1 0.040 0.040 95561 0.002
2 -0.009 -0.010 10.009 0.007
3 -0.014 -0.013 11.128 0.011
4 -0.021 -0.020 13.828 0.008
| | 5 0.005 0.006 13.960 0.016

6 -0.012 -0.013 14756 0.022

7 -0.014 -0.013 15882 0.026

8 -0.003 -0.002 15938 0.043

9 -0.010 -0.010 16.536 0.057
10 -0.002 -0.002 16.569 0.084
[ | 11 0.001 0.000 16.571 0.121
| | 12 0.003 0.003 16.632 0.164
13 -0.019 -0.020 18.836 0.128
| | 14 0.002 0.004 18.868 0.170
[ [ 15 0.005 0.004 19.025 0213
[ | 16 0.004 0.003 19.102 0.263
17 -0.017 -0.018 20.788 0.236
18 -0.014 -0.013 22038 0.230
| | 19 0.012 0.013 22847 0.240
20 -0.009 -0.011 23453 0.267
| | 21 0.004 0.004 23558 0.315
22 -0.003 -0.004 23630 0.367
| 23 -0.000 0.000 23631 0424
[ | 24 0.001 0.000 23641 0482

*Probabilities may not be valid for this equation specification.

Figure 8: ACF and PACF of the squared residuals from AR(2) model with
TGARCH errors on the differenced Ether series.

3.1.3 Ripple

The best fitting model for the Ether data is an AR(2) with TGARCH
error terms. After fitting I find the following modeﬂ

AXRP, = 0.13AXRP;_1 —0.10AXRP;_2 + ¢

6
(9.67) (—6.68) ©)

With an error process given by:
E;_1(e}) = 0.000000312 4 0.14¢;_; + 0.014D; 1671 + 0.87hs 1 )

(35.14) (26.60)  (1.97) (261.57)

We again look at the ACF and PACF of the residual and squared
residual series from this estimation and confirm that they mirror a white
noise process.

57-statistics in parentheses.



Date: 05/01/18 Time: 10:10

Sample: 1 5991

Included observations: 5388

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

0.026 0026 4.1606

0.026 0025 82374

0.009 0.008 87675 0.003
0.015 0.014 10143 0.006
-0.001 -0.002 10.149 0.017
0.017 0.016 11806 0.018
0.013 0.012 12.887 0.024
-0.011 -0.013 13671 0.034
0.020 0.020 16.104 0.024
I I 10 0.019 0.018 18292 0.019
11 -0.006 -0.008 18.496 0.030
12 -0.002 -0.003 18519 0.047
I I 13 0017 0.017 20.349 0.041
I I 14 0046 0.046 33.197 0.001
I I 16 0022 0.019 36.002 0.001
I I 16 0036 0.031 43774 0.000
I I 17 0028 0.024 48405 0.000
I I 18 0025 0.021 52226 0.000
| |

| |

| |

| |

| |

OO~ M Wwh =

19 0015 0.010 53.558 0.000
20 0.035 0.030 60.7%4 0.000
21 0.008 0005 61.238 0.000
22 0023 0020 64.503 0.000
23 0.027 0022 68859 0.000
24 -0.027 -0.032 73179 0.000

*Probabilities may not be valid far this equation specification.

Figure 9: ACF and PACF of the residuals from the above AR(2) model with
TGARCH errors on the differenced Ripple series.

10



Date: 05/01/18 Time: 10:10
Sample: 1 5991
Included observations: 5988

Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

I | 1 0001 0.001 0.0042 0.948
2 -0.002 -0.002 0.0281 0.986
3 -0.001 -0.001 0.0376 0.998
4 -0.005 -0.005 0.1760 0.996
5 -0.004 -0.004 0.2817 0.998
6 -0.005 -0.005 04317 0.999
7 -0.002 -0.002 0.4503 1.000
8 -0.003 -0.003 05028 1.000
9 -0.001 -0.001 05115 1.000

10 -0.002 -0.002 0.5301 1.000

11 -0.002 -0.002 0.5627 1.000

I | 12 0.001 0.001 05687 1.000

I | 13 0.001 0.001 05708 1.000

14 -0.002 -0.002 05872 1.000

15 -0.001 -0.002 06007 1.000

16 -0.001 -0.001 06073 1.000

17 -0.002 -0.002 06356 1.000

18 -0.002 -0.002 06697 1.000

19 -0.003 -0.003 0.7376 1.000

20 -0.001 -0.001 0.7433 1.000

I | 21 0.001 0.000 0.7452 1.000

I | 22 0.004 0.004 0.8374 1.000

23 -0.001 -0.001 0.8489 1.000

24 -0.002 -0.002 0.8826 1.000

*Probabilities may not be valid for this equation specification.

Figure 10: ACF and PACF of the squared residuals from AR(2) model with
TGARCH errors on the differenced Ripple series.

3.2 Cointegrated Series Analysis

After finding a model for Bitcoin, Ether, and Ripple that only rely on
their own history, next, I test for Granger causality in the level—serieﬂ to
determine if information of the other coins can improve estimates for a
given coin. [ find significant bi-directional causality in most of the major
coin pairs. The only notable unidirectional exception is Bitcoin causing
Litecoin. We see the results below:

6The lag length for the level series was determined by optimizing the AIC in a standard
VAR.
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Pairwise Granger Causality Tests
Date: 04/30/18 Time: 19:08

Sample: 1 5991

Lags: 2

Null Hypothesis: Obs F-Statistic  Prob.
D_ETH does not Granger Cause D_BTC 5988 10.3061 3.E-05
D_BTC does not Granger Cause D_ETH 6.76282  0.0012
D_LTC does not Granger Cause D_BTC 5984 1.94498 0.1431
D_BTC does not Granger Cause D_LTC 10.2860 3.E-05
D_XRP does not Granger Cause D_BTC 5988 090736  0.4036
D_BTC does not Granger Cause D_XRP 0.03955 09612
D_LTC does not Granger Cause D_ETH 5984  6.99999 0.0009
D_ETH does not Granger Cause D_LTC 11.4547 1.E-05
D_XRP does not Granger Cause D_ETH 5988  3.03104 0.0483
D_ETH does not Granger Cause D_XRP 4.84651 0.0079
D_XRP does not Granger Cause D_LTC 5984 1.40093 0.2464
D_LTC does not Granger Cause D_XRP 0.71664  0.4884

Figure 11: Granger causality tests using the stationary differenced series.

Note, however, that these results are for the entire series. Restrict-
ing the sample to “post-bubble” data results in significant unidirectional
Granger causality for each coin, with Bitcoin acting as the first mover.

Next we look for co-integrating equations using the Johansen system
test with two lags as described above. The results from both the trace and
maximum eigenvalue statistics indicate three co-integrating equations at
the 5% level. To further motivate and understand the possibility of co-
integration, we can look at the relative prices of each series. Specifically,
I calculate the price of a given coin as denominated in another coin. For
example, the Bitcoin and Ether pair would tell us how many Bitcoin it
costs to buy a single Ether across our sample. The idea is to check if there
exists a relatively consistent relationship between the coins. A graph of
each pair is presented below:

12



Frice of ene Ripple in Bitcoin Frice of one Ripple in Ether

00025 04
00020
003
0015 4
g z
E £ o
0010 4
o0t
00005
o T T T T T e T T T T T
0N 0N W LW 00 00 20m w0 00 5000
Price of cne Litecoin in Bitcoin Price of one Liteoin in Ether
s &
5
204
4
G o1 -
5 B aq
ot
2
G T T T T T ! T T T T T
00 200 nm W 000 0 20m X0 L0 5000
Price of one Ether in Bitcoin Price of one Ripple in Litecoin
18 016
12
o124
10
g ome 008 |
B
5
0
004
04
= T T T T T 0 T T T T T
000 2000 a0 0m 5000 1000 2000 000 4000 5000

Figure 12: The relative price for each coin pair.

These graphs, while undoubtedly noisy, tell the story of different rela-
tive price jumps, but also of a potential correction to a long-run relation-
ship. Specifically, we see that each coin was “cheap” to buy with Bitcoin
up until about the 2750th hour in the dataset (this corresponds to approx-
imately December 10, 2017). At this point, Litecoin, Ripple, and Ether
all began to increase in price (and in that respective order) relative to
Bitcoin. The order of the price increases are exemplified in the graphs on
the right-hand-side, which show that Ripple and Litecoin both became
relatively “expensive” to buy with Ether, before returning to the previous
level. This is to say that first, the price of Litecoin increased away from
the long-run equilibrium. This was followed by a more dramatic increase
in the price of Ripple, and finally a slower, but substantial, increase in
the price of Ether. Finally we see that, through some mechanism, the
prices correct back to what appears to be an average ratio between the
pairs. Thus, while volatile indeed, there does appear to be the possibility
of persistent long-run relationships.

With that said, I run the vector error correction model with three
co-integrating equations, and no trend or intercept, as suggested by the
Johansen system test. The results are presented in Figure [[3] below:
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Vector Error Correction Estimates

Date: 05/01/18 Time: 20:57

Sample (adjusted): 5 5991

Included observations: 5982 after adjustments
Standard errors in () & t-statistics in [ ]

Cointegrating Eq CointEq?1 CointEg2 CointEqg3
ETH(-1) 1.000000 0.000000 0.000000
XRP(-1) 0.000000 1.000000 0.000000
LTC(-1) 0.000000 0.000000 1.000000
BTC(-1) -0.068185 -8 21E-05 -0.015995

(0.00479)  (8.7E-06)  (0.00083)
[14.2310]  [9.42743]  [19.1596]

Error Correction: D(ETH) D(XRP} D(LTC} D(BTC)

CointEq? 0.003404  -6.91E-06  -0.000360  -0.008474
(0.00079)  (1.8E-08)  (0.00023)  (0.01028)
[[432193]  [-391229] [154972]  [-0.82448]

CointEq2 1400112 -0.000194  -0.007361 1.825967
(0.39368)  (0.00088)  (0.11607)  (5.13791)
[3.55650] [0.21929]  [-0.06342]  [0.35539]

CointEq3 0002783  222E-05  -0002850  -0.122030
(0.00398)  (8.9E-08)  (0.00117)  (0.05170)
[0.70263]  [249730] [244053]  [-2.38041]

Figure 13: Vector Error Correction model with three co-integrating equations
and no time-trend or intercept.

While this table will take me some time to understand and explain
in detail, the parts that stand out is the non-zero speed of adjustment
for both Litecoin and Bitcoin in cointegrating equation 3. Besides that,
nothing stands out as statistically and economically significant. Based on
the graphs above, the next steps are to explore longer lag lengths, or by
using a restricted dataset.

4 Conclusion

A preliminary analysis of Bitcoin, Ether, Ripple, and Litecoin suggest the
following;:

— An apparent bubble began for each coin starting around
December 2017 until early February 2018. Figure 2 shows
the ratio of each coin’s price to it’s series mean. We see that Rip-
ple (XRP) experienced the most dramatic price increase during the
bubble with prices of nearly 5 times the average price. In contrast,
Bitcoin, Ether, and Litecoin all saw a maximum price of about 2.5
times their mean price during this period.

— The maximum price of each coin occurred at different points
in time, possibly indicating causality with a lag length of a
couple weeks during the bubble period. Specifically, Bitcoin
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was the first to reach it’s maximum, followed closely by Litecoin,
then Ripple, and finally Ether. This tells us that Bitcoin is likely
the most exogenous coin, with the others following it’s movement at
various lag lengths. If, however, we restrict the dataset to the “post-
bubble” period, we find significant uni-directional granger causality
indicating that Bitcoin is the first mover with all other coin’s follow-
ing it’s movement 2 hours later.

— We cannot reject the possibility of a long-run relationship
between coin pairs. Based on the exchange rates in Figure 12,
there was a dramatic change in the exchange rates from early De-
cember 2017 to early February 2018. However, after this apparent
bubble, the exchange rates have all returned to levels that are con-
sistent with “pre-bubble” rates. More analysis and data are needed
to confidently investigate co-integration.

4.0.1 Further Research

The next steps in this analysis are to compare various subsamples of this
data set. Specifically, I will test whether the “pre-bubble” and “post-
bubble” series have similar behavior, or if the “bubble mainia” changed
investor perspective. Further research is also needed to explain the “bub-
ble” that started in late-November/early-December 2017 and ended in
late-January/early-February 2018. For that, I intend to perform a senti-
ment analysis using Twitter data to see if quantity of positive and negative
tweets correlate with large price changes.
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