Blockchain Basics
A Dive into Ethereum and Bitcoin

Stephen M. Lee

smlee@memphis.edu

Abstract. Public blockchains and their corresponding cryptocurrencies
have captured the imagination of many in recent years. Since the release
of Bitcoin, several other projects, most notably one called Ethereum,
have extended the key insights to allow code of arbitrary complexity to
run securely on these public networks. This paper describes the main
problem that they seek to solve and then proceeds to compare and con-
trast the implementations of Bitcoin and Ethereum. Finally, I suggest
an evaluation of the Ethereum blockchain as a distributed system based
on how well it makes resources available and provides user transparency,
openness, and scalability.

1 Introduction

The original Bitcoin paper [8] was released in 2008 under the pseudonym Satoshi
Nakamoto. Here, the author introduces a novel way of enabling digital, peer-to-
peer financial transactions without double-spending attacks.! This is the ma-
jor contribution of blockchain technology. Traditionally, this problem is avoided
through the use of banks and other intermediaries (i.e. Paypal, Venmo) who
ensure that users don’t spend more than they actually have. With Bitcoin, how-
ever, double spending is prevented through a clever combination of cryptography
and game theory, opening up a new world of opportunities for peer-to-peer dig-
ital transactions. Opportunity has a cost, however. While public blockchains
can truly allow for secure peer-to-peer digital transactions without any mediat-
ing party, they are expensive: both computationally and financially. As will be
discussed in more detail, there is a necessary limit to the number of transac-
tions that can be included in each block — this condition can create a “bidding
war” over transaction fees to get your transaction counted in a reasonable time
frame. Further, whereas in most traditional distributed systems, adding more
computer resources can increase performance and throughput, blockchains add
security when more computing power joins the network?. This is to say that

1 A double-spend attack is when some attacker, Bob, spends the same units of a digital
currency with multiple people, Alice and Cate. For example, Bob sends an electronic
message to Alice that says he is giving her 5 dollars, but Bob sneakily sends the same
exact message to Cate. In this case, Bob is telling people that he has spent 10 unique
dollars, but without someone checking, he has actually only spent 5.

2 Suppliers of this computing power are called miners in the traditional Proof-of-Work
consensus algorithms. These will be discussed in more detail below.

2 Stephen M. Lee

there can be no increase in transaction throughput as more computers join the
network: it’s baked into the protocol.

There are efforts to scale transaction throughput with new consensus mecha-
nisms, however, the leading alternatives are still not in production. Additionally,
blockchains have taken various other forms besides Bitcoin. Most notably, and
the main focus of this paper, is Ethereum. This network was first introduced
by a University of Waterloo student named Vitalik Buterin as a whitepaper|[1]
and officially went live in 2015. Here, he extended some of they core Bitcoin
concepts to allow for more expressive scripting languages. While Bitcoin’s lan-
guage is a simple stack-based language that isn’t touring complete, Ethereum
does in fact offer touring-complete expressions. This change allows for creat-
ing secure “smart-contracts” that can process arbitrarily complex transactions.?
Again though, opportunity comes at a cost. This more expressive blockchain
has led to numerous security issues: bugs can now take the form of actual code
bugs or incentive bugs — a bug that arises through poor mechanism design that
allows an attacker to game your smart-contract system. Further, since the code
released onto a blockchain is immutable, patching bugs is a challenge.

With all of this in mind, blockchain technology does seem to offer a truly
unique and valuable asset: secure peer-to-peer digital transactions without the
need for an intermediary. However, until the cost of using these networks de-
crease, the status-quo is often cheaper.

2 Related Work

After the release of the original Bitcoin paper, not much additional work was
done until the Ethereum white and subsequent yellow [12] papers. The Ethereum
white paper laid out the conceptual framework for a more expressive blockchain
and, notably, introduced the concept of “gas”. In practice, paying for gas means
that a user must pay a transaction fee on the Ethereum network. This major
new piece in the blockchain is added to guarantee that a given smart contract
will eventually halt and not send the mining node into an infinite loop. Further,
the amount of gas that a user spends on a transaction is directly related to the
number of computational steps that the program takes — in this way, each opcode
call to the Ethereum Virtual Machine has a corresponding amount of gas that it
uses. The analogy here is intended to be just like buying gas for a car: one gallon
will not take you the same distance going uphill as it would going downhill.

The Ethereum yellow papers spell out actual implementation details for each
version of Ethereum, but does not necessarily constitute formal research.

More recently, however, academic researchers have began contributing. This
includes analyzing blockchain in asynchronous networks [9], research into various
other byzantine fault-tolerant frameworks [10] [11], and work that injects tra-

3 For example, on the Ethereum network you could create a smart-contract system
that allows a hotel to manage and rent it’s room inventory. In this way, in Ethereum
you can program smart-contracts that have a very heavy object-oriented feel.

Blockchain Basics A Dive into Ethereum and Bitcoin 3

ditional database and distributed computing ideas to better handle blockchain
information [7].

While work in this field is nascent, the large majority of research has come
from the open source community and the Ethereum Foundation. In particular,
several alternatives to the Proof-of-Work algorithm — most notably Proof-of-
Stake — are in research and development phases. Further, scalability research
also includes attempts to shard a blockchain across nodes and to build “side-
chain” options that don’t directly record to the main network, but periodically
write a Merkle Tree hash of all their previous activity to the main chain.

3 Design - Block Basics

For the scope of this paper, I will focus on the Bitcoin and Ethereum imple-
mentations of a public blockchain. Since they both have slightly different levels
of expressiveness, there are some subtle, and some profound differences. In gen-
eral, this section will proceed by describing how both systems track account
balances, what fields are included in a single transaction, and how transactions
are included into a block.

Accounts and Balances

On a public blockchain, coin balances are associated with a public account num-
ber, which, for Ethereum, is represented has 160 bit hexadecimal number.* This
public account is built using public/private key cryptography, and is necessary
to provide digital signatures for each transaction. After generating a public/pri-
vate key pair, several necessary methods are necessary: 1) it must be possible to
sign a message with your private key, and 2) it must be easy for someone else to
verify the message using your public key. All told, the API in pseudocode has
the following form:

1. function generateKeys(keySize)
returns (privateKey , publicKey)

2. function sign(message, privateKey)
returns (signedMessage)

3. function verify (publicKey, message, signedMessage)
returns (boolean)

This set of methods allows a user to uniquely sign a transaction while enabling
any other user on the network to verify that the transaction is in fact valid
using only the senders public address. Both Ethereum and Bitcoin use
implementations of an elliptical curve digital signature algorithm to generate

4 For example, one of my public Ethereum addresses is
0x130B6195560119579e69b2c787C6D 14906 F{91{9.

4 Stephen M. Lee

these keys, however, the details are outside the scope of this paper and may
well be taken as cryptographic magic.

While similar so far, Ethereum and Bitcoin differ substantially on how they
handle current account balances. For Ethereum, balances are stored in a
“global state”, where each account address is mapped to its current account
state using a Merkel Patricia tree.® Thus, each new transaction updates the
relevant account address mapping. Note that in addition to keeping track of
standard balances of Ether, the increased scripting complexity of Ethereum
also allows for storing other bits that can correspond to balances of
transferable tokens, reservations, digital collectibles, or nearly any other state
that can be conceived of with traditional object-oriented programming. This
difference allows Ethereum to store states of arbitrary complexity. Officially,
the state of an address in Ethereum is given by the following fields:

— nonce: This is a positive integer value that denotes the number of
transactions previously sent from the account address. It is through
incrementing this value that double-spending is prevented.

— balance: A positive integer value that records the number of Wei stored in
the account, where 1 Ether equals 10'® Wei. Wei is the smallest possible
unit of exchange while Ether is the unit often denoted for trade or
exchange.

— storageRoot: A 256 bit value that maps to the accounts aforementioned
Merkel Patricia tree.

— codeHash: A hash of the account’s code that will run when a message is
sent to it. This code is created upon construction and cannot be modified.
The machine that runs the code is called the Ethereum Virtual Machine
(EVM). An example of an account with code is a so-called “smart
contract”. Each contract can be conceptually thought of as an object in
traditional object oriented design, and each contract is stored latent in the
EVM until an external message calls it. In this way, every time you hear
the term “smart contract”, the phrase “stored program” is perhaps more
accurate.

On the contrary, Bitcoin keeps track of balances by recording so-called
“unspent transaction outputs” (UTXO). For Bitcoin, each transaction consists
of “inputs” and ”outputs”, where the sum of the inputs must equal the sum of
the outputs, and further, each input must be a valid UTXO from a previous
transaction. After an UTXO is used as input, it is removed from the pool of
valid UTXOs.® Through these simple interactions, Bitcoin is able to prevent
double spending by ensuring that no transaction output is spent twice. We can
imagine a transaction on the Bitcoin network visually in Figure 1 below.

® See https://ethereum.github.io/yellowpaper/paper.pdf.
5 For video description, see https://www.coursera.org/learn/cryptocurrency /home/welcome.

Blockchain Basics A Dive into Ethereum and Bitcoin 5

o

Transaction

(] Cour J>75

ouT 0.3 BTC
Sender’s
Signature

Transaction

zerc Ly) Cour) 28T

Transaction
2 BTC

1BTC

Sender’s
Signature

|

ouT 0.5 BTC
Sender’s
\ | Signature

Fig. 1. An example of a transaction on the Bitcoin network.

Transactions

Transactions on both Ethereum and Bitcoin are atomic in that they are
all-or-nothing: if something fails, then the transaction is reverted. Further,
there are no partial states. That is about the extent of their similarities,
however. The figure above shows visually what information is included into
each Bitcoin transaction - the unspent output from a previous transaction
along with the new outputs to be sent to other accounts. Transaction fees are
optionally included by sending more value in transaction inputs than outputs.

In contrast, a transaction in Ethereum feels a bit more intuitive on the surface:
an owner sends some optional value (in Wei) to a recipient, and the account
state updates the balances accordingly. However, to prevent double-spending
(as mentioned above), the sender must also include their current “nonce” value
that represents the number of transactions that the account has made
previously. Since accounts can be stored programs i.e. smart contracts, each
transaction also has an optional field for raw data that can be sent and
processed by an account. For example, consider an address that stores
complied bytecode that corresponds to the following pseudocode:”

" This pseudocode example is written using syntax from the Solidity programming lan-
guage, which compiles into machine code for the Ethereum Virtual Machine (EVM).

6 Stephen M. Lee

contract ERC20TokenExample {

mapping (address => uint256) balances;
string name = "COMP7212-Token” ;

function transfer(address _to, uint256 _value) public returns (bool) {
/* first make sure sender has enough x*/
balances [msg.sender] —= _value;
balances|[_to] += _value;
return true;

}

function balanceOf(address _addr) public returns (uint256) {
return balances[_addr];
}

function mint() public payable returns (bool) {

address sender = msg.sender; // address of the calling account
uint256 value = msg. value; // value carried with the message
balances [sender] += value; // create new ’tokens’

return true;

}

}

In the above example, if a sender wants to create tokens for herself, she can
create a new transaction that sends some amount of Wei (i.e. the base unit of
Ether) to the stored bytecode of the above contract and, importantly, include a
data segment that specifically tells the program to run the process using the
function “mint()”. In this way, a human with an account address can send
value (i.e. Wei) to an address that is purely governed by immutable code. To
finish up the book-keeping, a clever and slightly devious reader may ask about
preventing malicious transactions that include infinite loops. Rephrased, how
does Ethereum ensure that each transaction will eventually halt? The answer is
to also include the parameters gasLimit and gasPrice, which together set an
upper bound on the number of computational steps that the sender is willing
to pay for. These additional parameters do three things: 1) they require that
every transaction on the Ethereum network pay a transaction fee, 2) they
ensure that even in the case of malicious or faulty code, the transaction will
eventually halt, and 3) they make network attacks costly. Summarizing, the
following fields are included for each transaction on the Ethereum network:

— to: The address of the message recipient.

— value: The amount in Wei to transfer to the recipient, if any. This field can
be zero if the transaction is merely calling a stored program i.e. smart
contract in order to execute some request.

Blockchain Basics A Dive into Ethereum and Bitcoin 7

— nonce: The number of previous transactions made by the sending address.

— gasPrice: The price in Wei the sender is willing to pay per unit of gas.

— gasLimit: The maximum number of gas the sender is willing to pay for.
Here, each OPCODE that acts on the Ethereum Virtual Machine
corresponds with a specific amount of gas. In this way, setting the gas limit
is akin to setting the maximum number of computational steps the sender
is willing to try. If the transaction completes successfully, and there is gas
left over, the sender is refunded the difference.

— signaturelnfo: The sender also includes three values, r, s, and v, that can
uniquely sign for the transaction. These three values are the Ethereum
version of the “signedMessage” described in the digital signature API
above, and can be uniquely combined with the message (in this case, the
message is the hash of the transaction information) to prove that the
sender owns that address.

— data (optional): A bytes array of technically unlimited size (although
practically constrained by the gas limit) that is passed to the receiving
address. If the receiving address has code that can read the data, then it is
processed and both account state’s are updated. If something fails, or the
transaction runs out of gas, then the transaction is aborted and both
account states are reverted to their initial conditions.

Visually, we can imagine an Ethereum transaction as in Figure 2 below:

/ Transaction \

To: 0xe3104...C3a98b2a1Ce75beDc9]

Value: 6000000000
Nonce; 12

gasPrice: 500000

gasLimit: 21000

signaturelnfo: 565424242455, 5231, 27 }

Data:
0x654242fdfA2d4a54f24a242df4242d42
4f2d42df42bb560ce5422d42df42bb56...

Fig. 2. An example of a transaction on the Ethereum network.

Blocks

Having built a foundation for both Ethereum and Bitcoin with respect to
accounts addresses, balances, and transactions, we can now consider how

8 Stephen M. Lee

transactions are processed. Since both networks are public, permissionless,
peer-to-peer systems, processing cannot rely on transactions always being
received by all nodes, nor can it rely on transaction begin received in any sort
of sequential order. This is to say that transactions are broadcast to the
network, with no real guarantee of processing. Further, since both of these
networks are overlaid on existing TCP/IP protocols, they must be resilient to
dropped messages. In practice, this may mean that no single node has even
heard of every transaction request, however, as long as a majority of the nodes
receive an overlapping portion of transaction requests, then those can be
processed.

But how exactly are transactions processed? By creating a new “block” that
contains a reference to the previous block, some number of processed
transactions, and some additional information that makes it difficult to falsify
transactions. A simplified example of the minimum necessary block contents is
shows in Figure 3 below:

TN

Previous Block Hash:
‘ Oxc52b14ad3645...98ec75 ‘
Nonce:
0x65bbc8a2d1e2f35...558bha5 ‘
‘ Merkel Tree Root: ‘
0x57aabb6c52c21ff...65ffed2c

Hash_12 ..Hash_mn

Fig. 3. Example of fields in a Bitcoin block.

Notice that transactions are collapsed into what is called a “Merkel Tree” by
taking the cryptographic hash of neighboring transactions until a single root

Blockchain Basics A Dive into Ethereum and Bitcoin 9

value is found. This value, called the Merkel Tree Root, uniquely identifies the
transaction contents of the block - if any single transaction changes, then the
Merkel Tree Root will also change. As we will see in more detail below, this
property is crucial to providing transaction security and immutability to each
block.

Proof of Work

Note, also, the presence of the nonce in the block header. While it is tempting
to think of this in the same way as the nonce in an Ethereum transaction, they
are very different. As will be discussed in more detail below, the nonce is a
number that provides a “proof of work” for that block. Formally, the nonce is a
value that, when combined and cryptographically hashed with the rest of the
block header information, will output a value with a certain number of leading
zeros that correspond to a level of “block difficultly”. The key insight into this
nonce value is that there does not exist a faster way of finding a valid nonce
than random guessing, yet it is trivial to verify after one has been found. This
property stems from the fact that an effective cryptographic hash acts a
scrambler of sorts, whereby any input value of arbitrary length is mapped to a
unique® output of fixed length. For example, using the SHA256 hashing
algorithm, we can see the hashed output of several inputs:

SHA256(“hashThis”) = 0x8171ba87af5{0615160c4d1327d1cae61b3acecdf7e586¢c0ef10f1blfdc1b65e
SHA256(“HashThis”) = 0x9e11568603cae166a8tbf155a37b3b722¢1£e94900038335{957a50468c0e1b2
SHA256(“HASHTHIS”) = 0x6582d74cadd61c52{3235312¢859684fd9125db49429f9f242be5964d5fcdc73

The key insight here is that the outputs are unpredictable, even given very
subtle changes to the input. This fact enables the possibility of a “game”
whereby competitors try to be the first to find a valid nonce to put into the
block header. Using the above as an example, a valid nonce could have the
following property:

SHA256(blockHeader + nonce) = 0x0000007af5f0615160c4...f10f1b1fdc1b65e

Notably, the output hash contains some number of leading zeros. The exact
number of zeros is dictated by the protocol, and can update itself over time
depending on the number of competitors trying to guess a valid nonce: this is
to say that the number of zeros is set to ensure that one block is found, on
average, every t units of time. For Bitcoin, this target is one block every 10
minutes, and for Ethereum this is roughly one block every 13 seconds.
Implicitly, we recognize that, all things being equal, the more nonce guesses
that are made per minute, the faster a valid nonce could be found. Thus, as

8 Pseudo-unique, more technically. There is always a chance of collision, however, with
a good cryptographic hash function, the probability is so small as to be considered
impossible.

10 Stephen M. Lee

more competitors enter the game, the puzzle must get appropriately harder in
order to maintain a consistent time between blocks. These concepts can be
seen visually in the included code demo. It may seem like we made some leaps
here, and that’s because we did. To understand these ideas more fully, we must
consider the following:

— How do you get competitors to agree that a fellow competitors block is
actually valid? Why don’t they just ignore every other block that they
didn’t find?

— How do you get competitors to actually participate? If it takes energy to
guess a nonce, why would they spend real money to do that?

4 Design - Block Chaining

To summarize up to this point: we have seen how both Bitcoin and Ethereum
treat accounts and balances, how they handle transactions between accounts,
and how those transactions are processed into blocks that periodically update
the global state. Namely, public/private key cryptography is used to sign
messages or transactions on behalf of a sender, and, after processing, value can
be securely transferred between accounts. This section will proceed by
explaining how subsequent blocks are linked or “chained” together.

Hash Pointers

As shown in the section above, blocks process transactions that update the
state of the relevant accounts. We can, therefore, consider each block as a state
transition in that it only reveals a glimpse of total state. How, then, can we see
the big picture? By considering the entire history of blocks in sequential order.
To do this, we simply include in each block a hash pointer to the previous
block and create a sort of append-only linked list. Visually we can see this in
Figure 4 below:

Blockchain Basics A Dive into Ethereum and Bitcoin 11

/ Block (k-1) \ / Block k \

Previous Block Hash:
0x00000ad3645...98ec75 }

(
|

Nonce } { Nonce
[

Previous Block Hash:
0x000003b45...bc65e8

A

Merkel Tree Root Merkel Tree Root

Hash_ 12 ..Hash_mn Hash_12 ..Hash_mn

[Hash_1 } { Hash 2 ..Hash_| n { Hash_1][Hash 2 ..Hash_r n

\E/ km/

Fig. 4. Hash pointers in a blockchain.

With this in mind, each new block that processes transactions must point to
what was previously the last block in the chain. Thus, the entire set of updates
to the state are given by the entire blockchain, and together they uniquely
define the current state.

Longest Chain

As we already discussed, a public blockchain network must be able to work
even if messages or transactions are dropped, and allow peers in the network to
come in and out of service as desired. This is to say that the network cannot
rely on all peers in the network to see the same exact pool of broadcast
transactions. Thus, we can easily imagine cases where several peers find a new
block (with different transaction sets) at approximately the same time and
broadcast their new node to the network for verification. When this happens,
some peers, but not all, could see a block A that is valid, and some other peers
could see a block B or block C that are also valid. When this happens, the
chain is said to “fork” (more specifically, it creates a soft-fork). In these cases,
the protocol uses the following lemma to decide which of these forks is the
valid chain:

Lemma: The longest or heaviest chain is always the valid chain.

Here, the main measure for the heaviest chain is the one with the “most”
proof-of-work as defined by the total difficulty of solutions. Recall from above
that difficulty in proof of work governs how many leading zeros must be
present when the nonce value is hashed with the rest of the information in the
block. Thus, the chain of blocks with the most difficulty is also the chain that
has the most competitors looking for nonce values. We can formalize this
slightly by calling the competitors “miners” and describing their effort in terms

12 Stephen M. Lee

of hashes-per-minute.? Using these terms, miners will always choose to add a
block to the longest (heaviest) chain, and that corresponds to the chain that
has the most competition. Visually, we can see the image below that represents
a blockchain with a couple small forks that are ultimately abandoned for the
longest proof-of-work chain.

f
\ N+1 ,sl
V4 i
\\\2_7 7-//’,,/
‘ ‘ ‘ Block Block Block Block
Block ... ‘ ‘ Block N ‘ N+l Ni2 4{ N+3 H N+d ‘
Y il ™ N
s N —
2 2| N 25
‘«‘ Block \/ | Block \‘

\
%

Fig. 5. An example of abandoned forks.

Block Size Limit

Before describing the game played by miners, we need to consider the following
case: what is stopping miners from colluding and simply ignoring valid blocks
sent from other miners so that they can try and include all of the transactions
themselves? This way, they could keep all of the transaction fees for
themselves. The answer to this is to impose a limit on the total size of each
block. For Bitcoin, this is referred to as the block size limit, and was originally
set at 1MB per block. This, however, has been a major source of disagreement.
For Ethereum, the corresponding concept is a bit more fluid. Recalling the
concept of gas described above,'® Ethereum sets a maximum gas limit for each

9 We can think of hashes per minute as guesses per minute. Each miner’s computer
will rapidly try to find a valid nonce that satisfies the block difficulty. Doing this can
use up considerable computational resources, and therefore we can easily imagine
that as more miners join the game, the more total guesses that can be tried each
minute.

Due to the increased scripting complexity of Ethereum, gas is introduced as a means
of ensuring transactions will eventually halt. In short, each OPCODE call performed
on the Ethereum Virtual Machine takes an amount of gas that corresponds with its

10

Blockchain Basics A Dive into Ethereum and Bitcoin 13

block. This effectively sets an upper limit on the total state changes from one
block to the next.

Ultimately, these upper limits create a situation whereby it is more profitable
for miners to accept a valid block and get a “head-start” on looking for the
next one than it is for them to stonewall acceptance in hopes of including all of
the transactions into their own block.

Block Rewards, Incentives, and Security

The final piece to the puzzle is the miner reward. The Bitcoin protocol set in
place a special rule that allows the first transaction in a block to actually create
new coins, and further, the miner that discovers the block is able to own those
coins. A very similar rule in set for Ethereum. One major difference to note is
that the reward for Bitcoin is set to pay a fixed total amount - in practice, this
means that the block reward is cut in half approximately every four years until
the ecosystem will be forced to rely entirely on transaction fees.!!

This reward scheme creates a game for miners: be the first to find a block with
a valid proof-of-work and pay yourself a reward. Additionally, the nature of
proof-of-work as explored above ensures that current blocks are valid (otherwise
the fellow miners will not accept the block), and that previous blocks cannot
(feasibly) be rewritten or edited by a malicious actor.!? We can see this is the
case by imagining that a malicious miner wanted to attack the network by
sneaking a fake transaction into an old block. To do this convincingly, they
would not only need to find a new valid nonce for that block, but also find a
new valid nonce for each subsequent block - and do all of that before any other
miner in the network found a single valid nonce to add to the longest chain.

computing complexity. So the gasLimit can essentially be thought of as paying for
a maximum number of computational steps for your transaction.

There are some interesting economics that arise with this implementation de-
cision, and, in short, they are not encouraging. Basically, the lack of a block
reward with create a congested queuing game in which only transactions with
a “sufficiently high” transaction fee will be processed. This condition necessi-
tates the threat of a long enough delay such that a user will feel the need to
“bribe” the miners to include their transaction. If there is no delay for processing
transactions, then users will not pay a fee, and miners will not spend their en-
ergy to mine blocks as it will be unprofitable. For more details see this working paper:
https://www.dropbox.com/s/siidwx99dwgxu9e /Huberman%2CLeshno%2CMoallemi-
Monopoly_without_Monopolist %3BEconomic_Analysis_of_Bitcoin.pdf?d1=0

There of course are attacks, both simple and sophisticated that can be done on the
network. The most obvious is dubbed a 51% attack and basically involves one miner
or group of colluding miners to control a majority of the hash power i.e. they must
be able to make more guesses than the rest of the network combined. In this case,
they can, on average, confidently generate a new block before the rest of the network.
This allows them, in theory, to not only find the new block, but also go back and
update old block with fake transactions.

11

12

14 Stephen M. Lee

In other words, by including the root of the Merkel Tree, and defining some
difficulty standard for the proof-of-work, any attack must redo the work. In
more concrete terms, if a miner wanted to slip a fake transaction into the
previous block, they would need to find two valid nonce values before anyone
else finds one valid nonce. If they wanted to fake a transaction into the k"
previous block, they would need to find k + 1 valid nonces before any other
miner found a single valid nonce. It is this property that leads people to
describe the blockchain as immutable or, more accurately, tamper-evident.

5 Design - Scaling

As described above, there are throughput limitations for both Bitcoin and
Ethereum that are written into the protocols. Namely, each block has a limit to
the number of transactions that can be included, and additionally, the
proof-of-work difficulty is set such that, on average, blocks are not found “too
often”.'3 That being said, the Ethereum Foundation is leading an effort to
research solutions to this scalability and usability problem.

Limitations to Proof of Work

The original proof-of-work as laid out in the original Bitcoin whitpaper
requires a tremendous amount of duplicated effort: essentially, some can argue,
the consensus game is to focus computation power on solving a very difficult,
but ultimately arbitrary problem. As a result, mining Bitcoin currently uses
about as much energy as the country of Austria.!* Further, special dedicated
hardware is now the standard in Bitcoin mining, as they can check hash values
faster than a GPU, making it only feasible for wealthy individuals who can
afford to have the hardware manufactured. Notably, Ethereum does not have
this issue as their implementation of proof-of-work is considered “memory
hard”,' and therefore, miners can feasibly compete using state of the art
GPUs.

Other Consensus Algorithms

The leading alternative to proof-of-work is so-called proof-of-stake. According
to the official Ethereum GitHub account, proof-of-stake is, “a category of
consensus algorithms for public blockchains that depend on a validator’s
economic stake in the network”.'6 Since this removes the costly mining
dependency of finding a valid proof-of-work, many believe this is the leading

13 For Ethereum, this is about one block every 12 seconds, and for Bitcoin, this is about
one block every 10 minutes.

4 See https://digiconomist.net /bitcoin-energy-consumption

15 For brevity I'm intentionally waving my hands about this. For more information, see
https://github.com/ethereum /wiki/wiki/Mining.

16 See https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs.

Blockchain Basics A Dive into Ethereum and Bitcoin 15

direction for the future of public blockchains. Importantly, if a validator is
found to be dishonest, the protocol can internally penalize them by confiscating
the staked coins: this is another major advantage of these consensus algorithms.
In proof-of-work, if a malicious miner acquired enough hardware to cheat the
network, the network can only fork away from that chain, but it cannot feasibly
confiscate the miner’s hardware, leaving open the possibility of another attack.

The first major implementation of proof-of-stake is scheduled for early 2019 in
the “Metropolis” update to Ethereum, although, this is expected to be a
hybrid system that combines both proof-of-work and proof-of-stake until the
latter is sufficiently stable. While researchers are looking for other, less energy
intensive, consensus algorithms that are Byzantine Fault Tolerant (BFT),
academic work is largely limited to survey papers as in [6] and [5].

Sharding

Without going into too many details, the idea with sharding a blockchain
network is to allow only a subset of nodes to verify each transaction - rather
than requiring that every node be able to process and verify every
transaction.!” While research into this area is still nascent, one such proposal is
to split the shards into static, domain-based shards as in [3]. Toward this end,
there is not currently any working implementation of a sharded blockchain
network.

Side-Chains

One of the most promising areas of scalability is to process a bulk of
transactions outside of the main network, and only periodically write the
Merkel Tree root as a checkpoint of activity. One such idea is to create so-called
“plasma chains”, as introduced in [2]. The analogy for this is akin to using a
bar tab: if I go in and make purchases, rather than charge me as I go (which is
inefficient for a busy bartender), they keep my tab, and, when I'm done, I pay
for the final sum. Challenges in this area are primarily focused around proving
malicious behavior and subsequently exiting a side-chain without loss of funds.

Analysis and Conclusion

Blockchain offers a truly new possibility: sending secure peer-to-peer digital
transactions without the need for a trusted intermediary. In this sense, it can
be thought of as a distributed system for securely and immutably tracking
value as it changes hands. Keeping the four goals of distributed systems in
mind, we can evaluate public blockchains, as they currently exist:

17 For more reading on this, please visit https://github.com/ethereum /wiki/wiki/Sharding-
FAQs.

16 Stephen M. Lee

— Make resources available (4/10): Public blockchains provide access
(albeit limited by some standards) to processing, memory, and storage. In
fact, the key advantage is as a “tamper-evident” ledger for storage, and as
a secure means of processing updates (in the form of transactions) to that
ledger. With this in mind, we can also consider trust and security as key
resources that are made available.

— Transparency (2/10): Transparency of Ethereum and Bitcoin are both
very low - using either system is bulky when compared to the current state
of the art with Financial Tech (for example, the ease of using ApplePay).
With so many of the core implementation details still being actively
researched, transparency will likely take a while to improve to a point of
mass adoption - if it ever does.

— Openness (9/10): Due to the open source nature of development, these
systems are very open with respect to interoperability, portability, and
extensibility. Many developers from all over the world contribute to
research, core development, and application development for these
networks.

— Scalability (3/10): While both Bitcoin and Ethereum are in use across the
world (i.e. geographically scalable), they have very limited throughput, and
are consequently a relatively expensive way of making small value
transactions. One interesting thing to note is the concept of “blockchain
governance”. Due to the peer-to-peer security offered, many are interested
in creating so-called “Distributed Autonomous Organizations (DAOs)”.
Thus, while in it’s infancy, administrative scaling could be an interesting
area to watch.

With this in mind, the wave of interest in distributed cryptocurrencies may
sometimes miss the important point: the underlying public blockchain
technology that enables the currencies to exist. From an application
standpoint, potential uses include any system where trusted intermediation is
necessary, expensive, and can be automated with code. This is to say that a
public blockchain system is not as helpful if parties all trust each other; if
human or company intermediation is easy and inexpensive; and finally, you
shouldn’t use a blockchain if ambiguity is necessary. That being said, possible
applications include shipment tracking in a large supply chain, renting out
hotel room access without using the likes of Expedia and Priceline, and
enforcing simple legal agreements in freelance work.

Blockchain Basics A Dive into Ethereum and Bitcoin 17

References

®

Buterin, Vitalik. “A Next-Generation Smart Contract and Decentralized
Application Platform-Ethereum Whitepaper”, 2014.”

Buterin V., Poon J.: “Plasma: Scalable Autonomous Smart Contracts” (2017)

H. Yoo, J. Yim and S. Kim : “The Blockchain for Domain Based Static Sharding,”
2018 17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/ 12th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE), New York, NY, 2018, pp.
1689-1692.

. Hull, Richard. “Blockchain: Distributed Event-based Processing in a Data-Centric

World.” Proceedings of the 11th ACM International Conference on Distributed
and Event-based Systems. ACM, 2017.

L. M. Bach, B. Mihaljevic, M. Zagar, “Comparative analysis of blockchain
consensus algorithms”, Information and Communication Technology Electronics
and Microelectronics (MIPRO) 2018 41st International Convention on, pp.
1545-1550, 2018.

L. S. Sankar, M. Sindhu and M. Sethumadhavan, “Survey of consensus protocols
on blockchain applications,” 2017 4th International Conference on Advanced
Computing and Communication Systems (ICACCS), Coimbatore, 2017, pp. 1-5.
Maiyya, Sujaya, et al. “Database and distributed computing fundamentals for
scalable, fault-tolerant, and consistent maintenance of blockchains.” Proceedings
of the VLDB Endowment 11.12 (2018): 2098-2101.

Nakamoto S. : Bitcoin: A Peer-to-Peer Electronic Cash System. (2008)

Pass R., Seeman L., Shelat A.: Analysis of the Blockchain Protocol in
Asynchronous Networks. Advances in Cryptology — EUROCRYPT 2017. Lecture
Notes in Computer Science, vol 10211. (2017).

10. Sousa, Joao, Alysson Bessani, and Marko Vukolic. ” A byzantine fault-tolerant

ordering service for the hyperledger fabric blockchain platform.” 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 2018.

11. Vukoli¢, Marko. “The quest for scalable blockchain fabric: Proof-of-work vs. BF'T

replication.” International Workshop on Open Problems in Network Security.
Springer, Cham, 2015.

12. Wood, Gavin. “Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper 151 (2014).” (2014).

